

FastCCD Q&A

- Status / performance / schedule of
 - 1k Frame Store FastCCD
 - fCRIC2
 - Buffer Chip
 - Complete systems
- Speed what's possible?
- Current issues
 - PSF, noise, response across CCD, ...
- Dealing with all of the data
- Miscellany

FastCCD Q/A (1)

- What is the status of 1K Fast CCD chip? →
- Would LBNL have time to replace our bad 480x480 Fast CCD chip?
 This would give us a true backup camera.
 - We have one 480 now many more after we process wafers. As soon as we have processed wafers, we can send a chip – or replace it
- What test were done with the new fCRIC chip? Any test to see how fast it can go? ->
- Have you used/tested the buffer chips that go between the CCD and the fCRICs? →
- Could you show pictures related to the 1K Fast CCD project?
 Smaller ATCA crate, Vacuum Chamber, Detector Head, CIN module... ->
- Who are the scientist at ALS and LCLS that have used the Fast CCD detector?
 - ALS BL 9.0 Marchesini, BL 12.3.2 Kunz, Tamura, BL 8.0 Chuang LCLS – Patthey, Johnson, Wei-Sheng Lee (best contact), others
- Coming up with a proper flat-field correction for Fast CCD →

BERKELEY

FastCCD Q/A (2)

- What is the readout speed we can expect from the new camera? Do you expect to achieve the full frame rate of >= 150 fps? Why or why not?
 - 200 fps →
- To what extent will the readout speed scale linearly with the size of an ROI? Specifically, if we want to read out a 100 pixel wide strip from the middle of the camera, can that be read out on the order of 0.6 ms as would be expected from scaling? →
- Is the readout speed adjustable. Can the clock be increased without major redesign?
 - We hope to get to 240 Mpix / sec. Limit without re-design. Working on next generation →
- Other than the fCRIC what other components limit the readout speed?
 - CCD and fCRIC. Buffer chip should improve speed (S/N)
- Is there an issue with depleting the chips? No →
- What will be the controls and data processing strategy with the new camera? Are they interested in using GPU's for postprocessing of data? Have other end users explored in-line data processing and, if so, how and what do they expect to achieve? Yes →
- Have other end users explored in-line data processing and, if so, how and what do they expect to achieve?
- Who are the other customers for the camera? Are they interested in readout speed? What other (common) design goals do they have? →
- Will the electronic noise, hot spots, and electronic instabilities be better with the newer camera version?
 - Noise should improve. Hot spots are still under investigation, hopefully passivation will help. Which instabilities?
- Will the point-spread function of the new chip be the same as the old one? Yes
- Would you please provide a current/updated schedule for the major detector deliverables
 - We plan to have systems ready ~end of the calendar year

Issue to discuss regarding the current camera

- Why is the point spread function of the camera larger than expected? Does the bias voltage have any significant effect on the PSF?
 - PSF should be $\sigma \sim 5-7 \, \mu m$ Need ~40 volts to deplete, beyond that, "over deplete"
- Why does the flatfield correction depend on the exposure time? ? (could be leakage current)
- Why does the flat field depend on which of the 10 pixels in the strips is being read?
 - Known problem suspect timing. Needs to be fixed in new readout
- Why is there an offset in the ADU/photon histogram? (E.g. the position of the first peak is somewhat less than the distance from the first to second peaks) ???

Direct Detection in Si

 \bullet Detector thickness 200 - 650 μ m

PSF and Bias

 3-phase MOS CCD, direct x-ray detection in thick, fully depleted Si using LBNL CCD process

At
$$V_{SUB} = 115 \text{ V}$$
, $\sigma_D = 3.7 \pm 0.2 \ \mu \text{ m}$

S. Holland

Charge sharing – reminder

Assume that the "charge cloud" from a single incident photon has a Gaussian distribution. For a 30 μ m pixel, σ = 5 μ m would imply charge collection in the central pixel as shown on the right (i.e. the fraction of charge, f_0 , collected in the central pixel when the photon is incident at (x_0,y_0) in the pixel

Charge sharing – reminder

central pixel (as a function of PSF σ) is:

If my arithmetic is correct, then for a pixel of pitch P, the fraction of signal in the central pixel (as a function of PSF
$$\sigma$$
) is:
$$F_0 = \left[erf \left(\frac{P}{\sqrt{2}\sigma} \right) + \sqrt{\frac{2}{\pi}} \frac{\sigma}{P} \left(e^{-P^2/2\sigma^2} - 1 \right) \right]^2$$

 $4-5 \mu m \sigma \rightarrow 75-$ 80% in the central pixel.

Not more – even though the pixel is 30 μm

1k Frame Store FCCD

- New CCD
- Improved readout chip fCRIC2
- New buffer chip for higher speed

2k x 1k CCD or 1k x 1k with electronic shutter

FastCCD

- Device from LDRD wafer (front illuminated)
- Issues with MSL processing – being fixed
- Production started (next page)

Improvements: fCRIC2

- fCRIC2 fixes 3 bugs in fCRIC
 - slight non-linearity (due to parasitics)
 - speed limitation in digital section (due to parasitics) which prevented us from getting to 1 μs cycle time (we've been using 1.6 μs cycle time)
 - poor Power Supply Rejection Ratio which increased the amount of pickup noise observed
- fCRIC2 tested standalone
 - noise meets spec
 - runs properly at 1 µs cycle time
 - planning to go to 0.8 μs cycle time for an LCLS app
 - waiting for PCB, new cables and new vacuum flange in order to test with CCD
 - results expected in ~1 month

Improvements: Buffer Chip

- Output SF g_m
- SF drives large load cap
- Resistive bias
- AC-coupling

- © SF drives small load cap
- © Current source bias
- © DC-coupling

- Simply waiting for PCBs (and assembly) delayed (problems at PCB house)
 - Results expected in ~2 months

Argonne in-vacuum clock board

ATCA Camera Interface board

Reminder: Frame Store CCD

Shrink photon stop for ROI readout

ROI (ROI $< \frac{1}{2}$ CCD)

Examples with 2x50 row stripes

Digitize Integrate Digitize

Integrate

Digitize / Integrate cycle – time T Shift cycle – time T/10

Need Odd Number of Stripes

ADC		Α		С		Ε		F		G
	Α	В	С	D	Ε		F			
	В	С	D	Ε		F		G		Н
	С	D	Ε		F		G		Н	
	D	Ε		F		G		Н		I
	Ε		F		G		Н		I	
	F	F	G	G	Н	Н	I	Ī	J	J
	G	G	Н	Н	I	I	J	J	K	K
	Н	Н	I	I	J	J	K	K	L	L
	I	I	J	J	K	K	L	L	M	M
	J	J		K		L		M		N
Cycle	I	D	S	D	S	D	S	D	S	D

- Some initial data lost – but "works" in steady state
- Integration time = digitization time
- Plus fast shift time (to be experimentally verified)

To be understood

- Slightly more complicated logic
- Maximum vertical clock
- Need to remove charge from "blank" stripes
 - Which are ~empty in steady state

Dealing with Data

 Approach 1- developed on ALS BL 9.0 (being applied to Nanosurveyor) – very fast pipe to NERSC

 Approach 2- firmware processing in-line (a goal of the Camera Interface Node)

 Approach 3- GPUs [simplest would be an ATCA blade with a GPU(s)]

Next: Very FastCCD

Conventional CCD	FastCCD	Very FastCCD		
4-port	(almost)Column Parallel	Column Parallel		
Commercial readout	fCRIC (custom 0.25 μ m CMOS readout IC)	HIPPO (custom 65 nm CMOS readout IC)		
IO ⁰ fps	10 ² fps	>10 ^{3.5} fps		

Almost Parallel → Fully Parallel

- Still a CCD
- Limit will be 10³ 10⁴ Mpix/s
 - Limited by clock rates
- 2 developments required:
- Prototype CCD in fabrication now
- Prototype readout IC in fabrication now

HIPPO 65 nm CMOS

Preamp (multi-slope) Mux

80 MHz 10-bit ADC

Serializer

HIPPO Submission

June 2011

